skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moscoso, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents technical details of determining the finite-volume energy spectra for the scattering amplitude of the coupled-channel πΣ−K¯N from lattice QCD data. The importance of reliably extracting such spectra lies in the crucial dependence of the hadronic scattering amplitudes analysis on the energy spectrum when using L\"{u}scher's formalism. Results of the methods used are presented and the final finite-volume spectra are shown. The analysis of the scattering amplitude based on these results, exhibits a two-pole structure for the Λ(1405), a virtual bound state below the πΣ threshold and a resonance pole right below the K¯N threshold. 
    more » « less
  2. A lattice QCD computation of the coupled channel πΣ–¯KN scattering amplitudes in the Λ(1405) region is detailed. Results are obtained using a single ensemble of gauge field configurations with Nf=2+1 dynamical quark flavors and mπ≈200  MeV and mK≈487  MeV. Hermitian correlation matrices using both single baryon and meson-baryon interpolating operators for a variety of different total momenta and irreducible representations are used. Several parametrizations of the two-channel scattering K-matrix are utilized to obtain the scattering amplitudes from the finite-volume spectrum. The amplitudes, continued to the complex energy plane, exhibit a virtual bound state below the πΣ threshold and a resonance pole just below the ¯KN threshold. 
    more » « less
  3. This Letter presents the first lattice QCD computation of the coupled channel πΣ−¯KN scattering amplitudes at energies near 1405 MeV. These amplitudes contain the resonance Λ(1405) with strangeness S=−1 and isospin, spin, and parity quantum numbers I(JP)=0(1/2−). However, whether there is a single resonance or two nearby resonance poles in this region is controversial theoretically and experimentally. Using single-baryon and meson-baryon operators to extract the finite-volume stationary-state energies to obtain the scattering amplitudes at slightly unphysical quark masses corresponding to mπ≈200  MeV and mK≈487  MeV, this study finds the amplitudes exhibit a virtual bound state below the πΣ threshold in addition to the established resonance pole just below the ¯KN threshold. Several parametrizations of the two-channel K matrix are employed to fit the lattice QCD results, all of which support the two-pole picture suggested by SU(3) chiral symmetry and unitarity. 
    more » « less
  4. Hüsken, N; Danilkin, I; Hagelstein, F (Ed.)
    This report summarizes results of the first lattice QCD calculation of coupled-channelπΣ−K¯Nscattering in the Λ(1405) region. This study was carried out using a single CLS ensemble with a heavier-than-physical pion mass m_π≈ 200 MeV and a lighter-than-physical kaon mass m_K>≈ 487 MeV. Once the finite-volume energy spectrum has been reliably extracted, the Lüscher method was employed to obtain scattering amplitudes. Through a variety of parametrizations of the two-channel K-matrix, the final results show a virtual bound state below the πΣ threshold and a resonance right below K¯N. 
    more » « less
  5. Recent results studying the masses and widths of low-lying baryon resonances in lattice QCD are presented. The S-wave Nπ scattering lengths for both total isospins I=1/2 and I=3/2 are inferred from the finite-volume spectrum below the inelastic threshold together with the I=3/2 P-wave containing the Δ(1232) resonance. A lattice QCD computation employing a combined basis of three-quark and meson-baryon interpolating operators with definite momentum to determine the coupled channel Σπ-NKbar scattering amplitude in the Λ(1405) region is also presented. Our results support the picture of a two-pole structure suggested by theoretical approaches based on SU(3) chiral symmetry and unitarity. 
    more » « less
  6. null (Ed.)
    Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. 
    more » « less